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On the Consistency of Minimum Il. COMPLEXITY-BASED PRIORS

Complexity Nonparametric Estimation Barron and Cover [1] have shown that the problem of estimating

a density nonparametrically can be solved using a complexity-based

prior by limiting the prior to a countably-dense subset of the space

of densities. More specifically, given a sequence of countable sets

of densitiesT’,,, and numbersL,,(¢) for densitiesqg in T',, let
Abstract—Nonparametric estimation is usually inconsistent without I = U,T",.SetL,(¢) = oo for ¢ notinT',,. For independent random

some form of regularization. One way to impose regularity is through variables X, Xo, -+, X,, drawn from an unknown probability

a prior measure. Barron and Cover [1], [2] have shown that complexity- density functionp, a minimum complexity density estimatgr, is

based prior measures can insure consistency, at least when restricted ) . L . L R

fo countable dense subsets of the infinite-dimensional parameter (i.e., d€fined as a density achieving the following minimization:

function) space. Strangely, however, these results are independent of the
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actual complexity assignment: the same results hold under an arbitrary .
permutation of the match-up of complexities to functions. We will show (1161}11 L.(q) Z log ¢(:
that this phenomenon is related to the weakness of the convergence .

measures used. Stronger convergence can only be achieved through ) o ]
complexity measures that relate to the actual behavior of the functions. If we think of L, (¢) as the description length of the densitythen

. - . N - the minimization is over total description length—accounting for both
Index Terms—Consistency, minimum complexity estimation, minimum . o
description length, nonparametric estimation. the density and the data. Barron and Cover showed tfiat gatisfies
the summability condition

sup Z 9~ Lnle) < H4oc

|. INTRODUCTION "
7€l

Maximum-likelihood, least squares, and other estimation tech-
niques are generally inconsistent for nonparametric (infiniténd the growth restriction
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provided thaip is in the information closur of T'. Here,P, andP  whatever conditiong,, does, and hence the same results are obtained
are the probability measures associated with the dengitieendp, (with the same bound on rate in (3)) usidg, in place of L,,! In
respectively, andy is in the information closur& of I'” means that generall!, will have no meaningful interpretation as a complexity
inf,er D(p|lg) = 0, whereD(p||q) is the relative entropy of to q. measure.

Barron and Cover also showed thatlif, satisfies a “light tail
condition,” i.e., if for somed < o < 1 andb

Z g—oLn(q) <D, for alln @) IIl. WHAT TIES CONSISTENCY TO COMPLEXITY?

q€T, Suppose thatX is a random variable from a probability space
(9, F, P) to ([0, 1], B). X introduces a measur&x on [0, 1]
and if L,, also satisfies the growth restriction (1), then foe T',  through the relationPyx (B) = P(X !(B)), for B € B. Choose a
with probability one countable dense subgetn L2([0, 1], Px), and define a “complexity
. function” L: I' — N. For any random variabl® from (€2, 7, P)
lim / |p — pn| = 0. to (R, B) with
- 2
A second paper by Barron [2] offers a minimum-complexity h(z) = BYIX = =) € ([0, 1], Px)
solution to the regression problem. LEX:, Y3)i-, be independent define the estimatok,, to be a function irl’ which achieves
observations drawn from the unknown joir;t distribution of random 51
variablesX, Y, where the support ot is in R®. HereX is the vector - - \\2
of explanatory variables anlf is the response variable. Functions er {T o ; (¥i = (X)) }
f(X) are used to predict the response. The error incurred by a -
prediction is measured by a distortion functioitY, f(X)), the We will always assume thdt satisfies a much stronger tail condition

most common form beingY” — £(X))2. Let h be a function which than (2)

minimizes E(d(Y, f(X))), which is to say that(z) = E(Y|X = ()

x) in the sql(Jared e(rro)r)case. When a functjois u)sed in( pl|ace of Z e < e, for anye > 0. “)

the optimum function: the “regret” is measured by the difference ret

between the expected distortions The first proposition demonstrates that for a weak form of con-
vergence, consistency is essentially independent of the complexity

r(f, h) = E(d(Y, f(X)))— E((Y, h(X))). measure:

Barron defines statistical risk for a given estimatb; to be  Proposition 1: If EY* < oo, then
E(r(h,, I)). Given a sequence of countable collections of functions - Py
I, and numbersL,(f), f € TI,, satisfying the summability hn —=h, as.

condition Obviously, the proposition remains true for any permutatioaf T

sup Z 9= Tnll) oo and resulting complexity functiopt’(f) = L(a(f)). But, suppose
fer,, we were to ask for consistency ii¥ (a.s.) in place of consistency in
probability (a.s.)? Then, despite the strength of the tail condition (4),
we would evidently need to pay closer attention to the complexity
measure:

7

the index of resolvability is defined as

R,(h) = min <7'(f, h)+ )\an (f)) . . .
fETy n Proposition 2: There exists a random variabl®, a countable

o ) ) _ . ) dense subsef’ in L?([0, 1], Px), and a functionL: ' — N

and a minimum complexity estimator is a functibn € I',, which satisfying (4) such that for any” with h(z) ¢ T, the L? norm

achieves of h, (in L%([0, 1], Px)) goes to+oc with probability one.

min

18 - - 1 (We are focusing on the regression problem, but analogous ar-
et <— Zd(h F(X) + A;L,L(f))

guments apply to probability density estimation. For example, by a
construction similar to the one used for Proposition 2, the minimum
Again there is a coding interpretation: di’Y, f(X)) is log proba- complexity density estimator discussed in Barron and Cover [1] may
bility of ¥ given X, thenh,, minimizes total description length for not converge to the actual densityn the sense of Kullback-Liebler
the modelf, plus the daté?, ---, Y, given Xy, ---, X,,. Barron -
showed that if the support &f and the range of each functigi{ X') /P log
is in a known interval of length, then with X\ > 55%/3 log e, the
mean-squared error converges to zero at rate boundét), by), i.e., even though the coding satisfies the strong condition (4).)

One way to rescue consistency is to tie the complexity measure

E(r(hn, b)) < O(Rn(h)). (3) L(f) more closely tof:

i=1

LAYy
Pn

Proposition 3: Suppose that for every € T, Ef*(X) < oo.

Taken together, these results offer a general prescription for non 4 ot o
ume EY" is finite (and hence so i€h*(X)). Construct a

parametric estimation of densities and regressions. Furthermore,'%}'?é lexity ) foll - Firet. defi
connection to complexity is appealing: It is not hard to invent suitabf@MPlexity function as follows: First, define

functionsL,, (-) by counting the bits involved in a natural encoding of e 4y 2B F2(X)
[y, (cf. [1]). There is, however, a disturbing indifference of the results Ci(f) = (Ef(X) +e)e
to the details of the complexity measure. For any set of permutatid?‘]%d
o, onT,, defineL, (&) = L.(c(¢)) and observe thak], satisfies C(f) = Ci(f)log C1(f).



1970 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 5, SEPTEMBER 1998

Then, given anyL,: T — N which satisfies (4), letL(f) = Now givenY’, with
C(f)L1(f). Then
. h(x) = BE(Y|X =) € L*([0, 1], Px)
iLn BN h a.s.
andh(x) € T, the set ofw which satisfies
Proofs for the propositions are in the Appendix.

D (Vi f(X)? = E(h(X) = f(X))* + E(Y = h(X))*,

APPENDIX i1

Recall thatX is a random variable defined on a probability space viel
(Q, F, P), taking values in([0, 1], B). Px is defined on0, 1] by
Px(B) = P(X~Y(B)), for B € B.T is then a countable denseand
subset ofL*([0, 1], Px). (Take, for examplel" to be a countable
dense set inL*([0, 1], dz); this will work for any Px which is
absolutely continuous with respect to Lebesgue measure and Eagf probability one. For any in this set, let
bounded derivativel Px /dx.) The complexity functionL: ' — N
is always assumed to satisfy the “strong tail condition”{(&)nally, Lif) 1< ‘
we assume that the response variable(a random variable on I (w) = arg min {— + = Z(Yi - fk(zYi))z}-
(Q, F, P)) has anL*-valued regressiom (z:) g " =

Xi(w) € B, V1 <i<n,Vlargen

h(z) = B(Y|X = 2) € L*([0, 1], Px). Then sinceh ¢ I, In(w) — oo asn — oo. For largen,
’ ' o R Xi(w) € By, () forall 1 < i < I,(w), and hence
The regressiom(z) is estimated by a functioh, € T that
achieves the minimum in 91, 0) (Xi (W) = fr, ) (Xi(w) V1 <i < L(w).
L) Ly 2 Therefore, for largen
Ilneli*l{ n +E ;(Yz FED™
- Ligr,) . 1N~y ~
We begin with Proposition 2. T D (Yi—g1,(X0))?
i=1
Proposition 2: There exists a random variabl®, a countable L(fr) 1< o
dense subsef in L*([0, 1], Px), and a functionL: T — N <=t ;Z(Yi — [, (X))
satisfying (4) such that for any” with h(z) ¢ T, the L? norm i=1

of i, (in L?([0, 1], Py )) goes to+oc with probability one.
Proof: ChooseX so thatPy is Lebesgue measure. FIx =

{fi,+++. fu, -} dense inL*([0, 1], Px). Let By, -+, B, -++ L) 1

be a sequence of measurable subsetf),jr], each of which has h, = arg min {— + = Z(Yi - f(Xi))Q} €{g1. 92, -}

positive probability, such that ret " nS

Consequently, with probability one, for large

P(A1<i<n, X; €B,, io. for n) =0. Since E(g?) — oo, this completes the proof. O

This condition can be achieved, for instance, if B satisfy Remark: As mentioneq i.” Section I, the same argument can be
used to show that the minimum complexity estimaigrin [1] may

i[l (1— Py(B ))k] < not converge to the true density in the sense that
- — L'X k oC.
k=1

/p log Ai + 0.
Now fori = 1, 2, ---, defineg;(x) as Pr
@) = {fi(l’), if + ¢ B; The proof of Proposition 1 is based on the following three lemmas.
o A, if z € B.. Lemma 1: Fix e > 0. Let Z,, Z., ---, Z, be a sequence of inde-
We first selectd; such thatE(g: — £.)? > 0 for all n € N. This pendent and |.dent|cally distributed (i.i.d.) random variables satisfying
can be done since there are only countably mgts/ while there a) Zi 72 0;
b) EZ7 < .

are uncountably many choices df . We then inductively select; _
such thatE(g;, — f,.)> > 0, for all n € N, andE(g; — gx)? > 0, Then if

for k = 1,---,i — 1. We also require ofd; that Eg? — +oo. - T 2y, EZy €
Theng,, go, -- - are distinct and none of them arelin Modify T to K > (Var (Z1)+ € )e and % < 1
include g1, g2, ---. DefineL: T — N such that

then
L(fn) > L(gn)

1 n EZ n
= i —EZ))<—e]<(1-5=] .
and P<77 ;(z EZ) < e) < <1 21‘,)

YT D <o, for anye > 0.

fer Proof: For anyt € (0, 1]
1For example, choose(-) strictly positive such thab~ ; a(f) < oo. If 1 <& kg _o\"
F(z) is any strictly positive function satisfying'(z)/z — oo ase — o, i D (Zi—EZ) < =€) < (Eﬁt( A ‘)> .
thenL(f) = F(—log a(f)) satisfies (4). =1
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Let &(t) = FEe'(=71TF%1=9 then

6(0) =1 6'(0) = —e
and
@ll(t) :E((Z1 - EZl + e)zet(izrkbzli())
< E(Z - EZ +¢)?'"r <K, for ¢ € (0, 1].
Hence

&' (t) < —e+ Kt, for ¢ € (0, 1]

and

o(t) <1 —et+ LKt for t € (0, 1].

Taket = ¢/K < 1, which is the minimizer ofl — ez + K¢*/2. Then

1 n 2 n
Pl — Z; < EZy — <Hl—-=1. O
(n ; < ! 6) - < ’_)Ix")

Lemma 2: SupposeEY* < oc. Let
h(z) = B(Y|X =) € L*([0, 1], Px).
Assumel is a countable dense subset of
{f € L*([0. 1], Px): |£(«)] < M}
and L: ' — N satisfies condition (4). Then giveh < ¢ < 1,

with probability one, for sufficiently largex and all f € T with
BE(f — hu)* > 3¢

1 n .
= Z(hM()ﬁz‘) -
n “
=1
where for any functionf

N f(;l:),
Ju(z) = {sign (f(x))- M,

L(f) | 1 =, 12
<T+ﬁ;<ﬂxl)—m (5)

if |f(z)]<M
otherwise.

(6)

Proof: We shall first give the idea of the proof. Assurfig <
M. With probability one, whem is sufficiently large

% D (X)) = Yi) +e
=1

is bounded byE (h(X)

L)

E(h(X)-Y)* 42 < 24 = Z(fm— 2.

The left-hand side equals

B(f(X)=Y)’ = B(f(X) - h(X))*+2e < E(f(X)-Y)" -
Hence we can prove the lemma by showing
—Z Y = B((X) =V > —e = PO

is true with probability one, for sufficiently large and all f € T.

—Y)? 4 2¢. We then get a stronger inequality

1971

By Lemma 1, for each fixed and f € T, the probability that this
inequality does not hold is bounded by

(o) < (o5) (-#0)

where K is a large number independent.of Becausel — x < e™"
for all 2 > 0, the above probability is then bounded by

FQ n . iy
1 —e (/R
< Ix") ‘

Summing over allf € T', we see that the probability that (5) is not
true is exponentially small. A Borel-Cantelli argument then finishes
the proof.

We turn now to the details of the proof. Define

B(ha) = {f € T: E(f = hw)* > 3¢} )
For f € I, define

n

Ty w(ha) = {% D (F(X) -

=1

Yi)? +“f)

< S (X) = Yo + e} ®)
U . )

FeB(hyr)

Valhut) =

Write

R, (hy) = {‘% Z(hm (X)) -Y)?

=1

—E(hm(X)-Y)?

e} (10)

R(hpy) = lim inf R, (hat). (11)

Henceforth, we will simplify the notation by writind3 instead of
B(hu), Ty, » instead ofT¢, , (has), and so on. By the strong law of
large numbersP(R) = 1. Next show thaty" P(V, N R,) < oo.

If this is true, then by the Borel-Cantelli lemma

P(limsup V,,)=P(limsup V,, N R) < P(limsup (V,, N Ry,))=

n—oo n—oo n—oo

which is what needs to be proved.
Forw € R, andf € B
- Z (har (X E(f(X)-Y)*

<24 E(hu(X) -

te-

Y)? - B(f(X)-Y)*.
Clearly,
E(Y - (X)) = E(Y - h(X))*+ B(h(X) -
Since|f| < M, |h — f| = |h — har| + |har — £
E(Y — f(X))>> E(Y — (X))’ + E(h(X) — hp (X))’
+ B(ha(X) - £(X))
=B - hu(X)*+ E(hu(X) -
> E(Y — hat(X))* + 3e.

FIX))2

F(X))?
Hence

‘+e—E(f(X)-Y)’ < -e

; Z (har (X3)
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Supposef € B andR, N Ty, ., # 0. For anyw € R, N Ty », by Lemma 3: Let i be a finite measure, and lgt and f.., n =

the above inequality 1, 2, ---, be measurable functions. ff < o, p-a.s., and if
IRV /5 Jae L(f liminf limsup E(fn ar — far)” =
n Z(f(—)(i)—}i)z _E(f(_)()—})z < —e— nf) =5/ n. gV g, n_)ooI fr, 50 — far)
=1 g
Furth then f. 55 7.
urthermore, Proof: SupposeM,, — oo is a sequence such that
1 e )
S o Z (har(Xi) = Yi)* + ¢ IEI;O llillsolip E(furr, — frr)> =0
and hence Fix e > 0 and M > 0. Then
. , : n({|fo = fI>€}) < u({lf] > My —€})
510 264 = 3 (hat(X2) - Vi) > M |
ni3 +u({lfl < M — far,| > €})
. 2 . 1 . .
<34 E(hy(X)-Y)’ = H. (12) < pl{If] > My — €}) + gE(fM,,,k — far)?
Fix I such that Let n — oo and thenk — oc to complete the proof. O

iti DIf BEY* )
K> (B +|Y))' + H?)e B(M+|Y )2 Proposition 1: If < oo, then

by 250
Now for any f € B with R, N Ty, # 0, it is easy to check n— N as.

Proof: The idea is to chooséd{;, — oo and then truncate
the functions in[' as in (6). Then by Lemma 2, we will get
E(hn ar, — har,)? — 0, whereh,, s, is the truncated‘l,,, and

hu, is the truncatedi. We then use Lemma 3 to gét, =g
Filling in the details, givere > 0, there isM = M(e) > 0 such

(Var (F(X) = Y)?) 462 )"0 O° < K and 65, < K.

Then by Lemma 1, for any € B with R, N Ty ,, # 0

P(Bn O Tyn) that B(h — har)? < € and
1 .
<P =S (AX) = YD) - BF(X) = Y)* < =8y, - o .
h / (Y]+M)* <4 / VP <e
< (1 _ w) ¥1> ¥ 1>1
) : EA ; ; With probability one, whem is sufficiently large
(122N (1o EDMY
) QK r . L(h ‘
LA Z(} — hn(X0))* < = Z(m — (X)) + e
Since i=1
eL(f)/n _ €f.n Consider
K < K < 1 L(iln) 1 n ) ,
— 1t Z(L — b, m(X2))7

i=1
andl —z < e %, foral 0 < z < 1, we getP(R, NTy,,) is

bounded by Observe thatY; — hn, ar(X:)] > |Vi — ha (X5)| implies |Y;| > M.

Hence
Fz K FL(f) > n
1- - . o
< 21{) eXp( K ) M+l§ (Yi = hn, 10(X3))?
n n
=1

3 iLn (AXi))Z

Therefore,

P(R,NV,) < > P(R.NTy0) Lo
jeB += S Yil 4+ M) - Ty, s u-
i=1

2 n L(f
(i) gl
fer

and by the strong tail condition (4} exp(—eL(f)/K) < oo. L& ‘ . ‘
Since K is independent of:, P(R, N V,) is exponentially small = Z(|Y}| +M)* Iy, sur < / (Y] +M)* 4+ € < 2¢
andy’ P(R, NV,) converges. O =t IY1>M

With probability one, for sufficiently large:
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and, therefore, for large Since there are only finitely mang with L(f) < D, by the strong
law of large numbersP(limsup V;/') = 0. Thus in order to get
L(hy) 1 . 1 . ) P(limsup V,,) = 0, we need only show thaP(lim sup V) = 0.
T Z(h = hn,0(Xi))” < n Z(L’ = har(X0))"+ 3¢ similar to Lemma 2, it is enough to check

i=1 =1

n n

Let Ty = {fm: f € T}U {ha}, which is dense in Z PV, N Rn) < oo

L*([0, 1], Px) N {||flle <

M}, Derive again the constarff, as in (12). Then for eaclf € T,
define

DefineL': Tyy — N as ) o B —y2

K(f) = (Var ((£(X) = Y)*) + H?)ePTH707 5 ¢,

L'(7) =min{L(f): fsr =m, f €T}
() = min{L{f): far = 7. f } Then for anyf € B with R, N7}, # B, as in the proof of Lemma 2

2o\ «C(f)Li(f)
P(Rn mTf,n)S <1_21{(f)) °Xp <_Tf))

Then with probability one, for large

L'(]Aln“m/[) 1 . S Py
T + ; ;(Yz - fn,l\d(Xa))

Hence

Z(y — ha (X)) + 3e. S P(R.AVS > Y P(R.NTyn)

i=1 n=1 Ll(f)ZD n=1
L’ satisfies the strong tail condition (4). According to Lemma 2, with < Z 2[&2(f) exp <_w)
probability one, for sufficiently large: INGE v (f)

2
E(iln‘]\f _ hm)z < 9e. =2 Z ) exp(L1(f)J(f, E))
Li(f)>D

Let S(e) be the subset of points ift such that the above relationwhere

holds, i.e.,
olds, i.e 705, E):_ec(f)+loglx(f)

K(f) Li(f)

It is easy to see that there is a constant ¢(Y, h) > 0, such that

C(f) > cK(f) log K(f) > 0. Now chooseD = D(Y, h, €) such
Choose a sequeneg — 0, and letM,, =M (e, ) and S, = S(en). thatecD > 2. Then for L, (f) > D

Then onS = NS,, which has probability one

S(e) = lim inf {w: E(hn. a1 — har)? < 95}.

n— oo

log K( < eC(f)
hm sup lim  E(hn, a1, — har,)? = 0. Ll(f) 2K(f)

17— 00

. p Since K(f) > e
By Lemma 3, for anyw € S, h,, —h, which completes the prodil

. C C
Proposition 3: Suppose that for every € I', Ef4(X) < oo. J(f ) < _261{((];‘)) < _21{(;) lii)l{(f) < —%-

Assume EY* is finite (and hence so igZh*(X)). Construct a °

complexity function as follows: First, define So

. — 2 _ Y
Cr(f) = (EFH(X) + )P0 D PNV < 5370 e <o
and =t e
C(f) = C1(f) log C1(f) Similar to Lemma 3, we can now conclude that for dny ¢ < 1,
' the set

Then, given anyL:: I' — N which satisfies (4), letL(f) =

C(f)L1(f). Then S(e) = {w: E(h, —h)” < 3e, for sufficiently Iargen}

L2 has probability one. Finally, then, far € N3, S(k™*

h, — h a.s.

E(IAI," - 11)2 — 0 asn — oo. O

Proof: We will follow closely the proof and the notation of
Lemma 2. As in Lemma 2, we need to show tRatim sup V) = 0.

Fixing a numberD = D(Y, h, ¢), which will be determined later,

we first decomposé’, as [1] A. R. Barron and T. M. Cover, “Minimum complexity density esti-
mation,” IEEE Trans. Inform. Theoryvol. 37, pp. 1034-1054, July
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